蛋白质复合物形成是生物学中的核心问题,参与了大部分细胞的过程,以及对应用是必不可少的,例如,药物设计或蛋白质工程。我们解决刚性体蛋白 - 蛋白质对接,即计算地预测来自个体未结合结构的蛋白质 - 蛋白质复合物的3D结构,假设在结合期间蛋白质内没有构象变化。我们设计一种新的成对独立的SE(3)-Quivariant的图形匹配网络,以预测旋转和翻译,以将其中一个蛋白质放置在右对接位置相对于第二蛋白质。我们在数学上保证了基本原理:无论两个结构的初始位置和方向如何,预测复合物都是相同的。我们的模型,名为Equidock,近似于绑定口袋并通过最佳传输和可分辨率的Kabsch算法实现,实现了使用关键点匹配和对准的对接姿势。凭经验,尽管没有依赖于沉重的候选抽样,结构细化或模板,我们才能实现显着的运行时间改进,并且通常优于现有的对接软件。
translated by 谷歌翻译
产生稳定材料的周期性结构是材料设计界的长期挑战。这个任务很难,因为稳定的材料只存在于原子的所有可能的周期性布置的低维子空间中:1)坐标必须位于量子力学限定的局部能量最小,而2)全球稳定性也需要遵循结构不同原子类型之间的复杂,但特定的粘合偏好。现有方法未能纳入这些因素,并且经常缺乏适当的侵略者。我们提出了一种晶体扩散变分性AutoEncoder(CDVAE),其捕获材料稳定性的物理感应偏差。通过从稳定材料的数据分布中学习,解码器在扩散过程中产生材料,其将原子坐标朝向较低能量状态移动并更新原子类型以满足邻居之间的粘接偏好。我们的模型还明确地编码了周期性边界的交互,尊重置换,转换,旋转和周期性修正。我们在三个任务中显着优于过去的方法:1)重建输入结构,2)产生有效,多样化和现实的材料和3)产生优化特定性质的材料。我们还为更广泛的机器学习界提供了几个标准数据集和评估指标。
translated by 谷歌翻译